2 research outputs found

    Use of a Combination of MRSS-ANP for Making an Innovative Landfill Siting Decision Model

    Get PDF
    Landfill siting is a complex, multicriteria decision-making problem that needs an extensive evaluation of environmental, social, land use, and operational criteria. Integration of a median ranked sample set (MRSS) and an analytic network process (ANP) has been implemented to rank the associated criteria and select a suitable landfill site. It minimizes the uncertainty and the subjectivity of human judgments. Four groups of experts with different backgrounds participated in this study, and each group contained four experts. The respondent preferences were ranked in a 4-by-4 matrix to obtain the judgment sets for the MRSS. These sets were subsequently analyzed using ANP to obtain the priorities in the landfill siting criteria. The results show that land topology and distance from surface water are the most influential factors, with priorities of 0.18 and 0.17, respectively. The proposed integrated model may become a promising tool for the environmental planners and decision makers

    Recent Advances of Nanoremediation Technologies for Soil and Groundwater Remediation: A Review

    No full text
    Nanotechnology has been widely used in many fields including in soil and groundwater remediation. Nanoremediation has emerged as an effective, rapid, and efficient technology for soil and groundwater contaminated with petroleum pollutants and heavy metals. This review provides an overview of the application of nanomaterials for environmental cleanup, such as soil and groundwater remediation. Four types of nanomaterials, namely nanoscale zero-valent iron (nZVI), carbon nanotubes (CNTs), and metallic and magnetic nanoparticles (MNPs), are presented and discussed. In addition, the potential environmental risks of the nanomaterial application in soil remediation are highlighted. Moreover, this review provides insight into the combination of nanoremediation with other remediation technologies. The study demonstrates that nZVI had been widely studied for high-efficiency environmental remediation due to its high reactivity and excellent contaminant immobilization capability. CNTs have received more attention for remediation of organic and inorganic contaminants because of their unique adsorption characteristics. Environmental remediations using metal and MNPs are also favorable due to their facile magnetic separation and unique metal-ion adsorption. The modified nZVI showed less toxicity towards soil bacteria than bare nZVI; thus, modifying or coating nZVI could reduce its ecotoxicity. The combination of nanoremediation with other remediation technology is shown to be a valuable soil remediation technique as the synergetic effects may increase the sustainability of the applied process towards green technology for soil remediation
    corecore